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Abstract

Over the past decade, deep learning (DL) research in computer vision has been growing rapidly, with
many advances in DL-based image analysis methods for biomedical problems. In this work, we
introduce MMV_Im2Im, a new open-source Python package for image-to-image transformation in
bioimaging applications. MMV_Im2Im is designed with a generic image-to-image transformation
framework that can be used for a wide range of tasks, including semantic segmentation, instance
segmentation, image restoration, and image generation, etc.. Our implementation takes advantage of
state-of-the-art machine learning engineering techniques, allowing researchers to focus on their
research without worrying about engineering details. We demonstrate the e�ectiveness of
MMV_Im2Im on more than ten di�erent biomedical problems, showcasing its general potentials and
applicabilities.

For computational biomedical researchers, MMV_Im2Im provides a starting point for developing new
biomedical image analysis or machine learning algorithms, where they can either reuse the code in
this package or fork and extend this package to facilitate the development of new methods.
Experimental biomedical researchers can bene�t from this work by gaining a comprehensive view of
the image-to-image transformation concept through diversi�ed examples and use cases. We hope this
work can give the community inspirations on how DL-based image-to-image transformation can be
integrated into the assay development process, enabling new biomedical studies that cannot be done
only with traditional experimental assays. To help researchers get started, we have provided source
code, documentation, and tutorials for MMV_Im2Im at [1] under MIT license.

Introduction

With the rapid advancements in the �elds of machine learning (ML) and computer vision, computers
can now transform images into new forms, enabling better visualization [2], better animation [3] and
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better information extraction [4] with unprecedented and continuously growing accuracy and
e�ciency compared to conventional digital image processing. These techniques have recently been
adapted for bioimaging applications and have revolutionized image-based biomedical research
[5,6,7,8]. In principle, these techniques and applications can be formulated as a general image-to-
image transformation problem, as depicted in the central panel in Figure 1. Deep neural networks are
trained to perceive the information from the source image(s) and reconstruct the learned knowledge
from source images(s) in the form of a new image(s) of the target type. The source and target images
can be real or simulated microscopy images, segmentation masks, or their combinations, as
exempli�ed in Figure 1. Since these underlying methods share the same essential spirit, a natural
question arises: is it possible to develop a single generic codebase for deep learning (DL) based image-
to-image transformation applicable to various biomedical studies?

In this paper, we introduce MMV_Im2Im an open-source microscopy machine vision (MMV) toolbox
for image-to-image transformation and demonstrate its applications in over 10 biomedical tasks of
various types by performing more than 30 experiments. Currently, MMV_Im2Im supports handling
2D~5D microscopy images for supervised image-to-image translation (e.g., labelfree determination
[5], imaging modality transformation [6,9]), supervised image restoration [7], supervised semantic
segmentation [10], supervised instance segmentation [11,12], unsupervised semantic segmentation
[13], unsupervised image to image translation and synthetization [14]. The toolbox will continuously
grow with more and more methods, such as self-supervised learning based methods, ideally also with
contributions from the open-source community.

Why do we need such a single generic codebase for all deep-learning based microscopy image-to-
image transformation? MMV_Im2Im is not simply a collection of many existing methods, but rather
has a systematic design for generality, �exibility, simplicity and reusability, attempting to address
several fundamental bottlenecks for image-to-image transformation in biomedical applications, as
highlighted below.

Feature 1: universal boilerplate with state-of-the-art ML engineering:

Bottleneck: existing code not easy to understand or to extend or re-use.

Our package MMV_Im2Im employs pytorch-lightning [15] as the core in the backend, which o�ers
numerous bene�ts, such as readability, �exibility, simplicity and reusability. First of all, have you ever
had the moment when you wanted to extend someone’s open-source code to suit your special ML
needs, but found it so di�cult to �gure out where and how to extend, especially for complex
methods? Or, have you ever encountered the situation where you want to compare the methods and
code from two di�erent papers, even solving the same problem, e.g. semantic segmentation, but not
quite easy to grasp quickly since the two repositories are implemented in very di�erent ways? It is not
rare that even di�erent researchers from the same group may implement similar methods in very
di�erent manners. This is not only a barrier for other people to learn and re-use the open-source
code, but also poses challenges for developers in maintenance, further development, and
interoperability among di�erent packages. We follow the pytorch-lightning framework and carefully
design a universal boilerplate for image-to-image transformation for biomedical applications, where
the implementation of all the methods share the same modularized code structure. For all PyTorch
users, this greatly lowers the learning curve for people to read and understand the code, and makes
implementing new methods or extending existing methods simple and fast, at least from an
engineering perspective.

Moreover, as ML scientists, have you ever been overwhelmed by di�erent training tricks for di�erent
methods or been curious about if certain state-of-the-art training methods can boost the
performance of existing models? With the pytorch-lightning backend, MMV_Im2Im allows you to enjoy
di�erent state-of-the-art ML training engineering techniques without changing the code, e.g.,



stochastic weight averaging [16], single precision training, automatic batch size determination,
di�erent optimizers, di�erent learning rate schedulers, easy deployment on di�erent devices,
distributed training on multi-GPU (even multi-node), logging with common loggers such as
Tensorboard, etc.. In short, with the pytorch-lightning based universal boilerplate, bioimaging
researchers can really focus on research and develop novel methods for their biomedical applications,
without worrying about the ML engineering works (which are usually lacking in non-computer-science
labs).

Feature 2: modularization and human-readable con�guration system:

Bottleneck: Dilemma between simplicity and �exibility

The toolbox is designed for both people with or without extensive experience with ML and Python
programming. It is not rare to �nd biomedical image analysis software that is very easy to use on a set
of problems, but very hard to extend or adjust to other di�erent but essentially related problems, or
�nd some with great �exibility with tunable knobs at all levels, but unfortunately not easy for
inexperienced users. To address this issue, we design the toolbox in a systematically modularized way
with various levels of con�gurability. One can use the toolbox with a single command as simple as 
run_im2im --config train_semanticseg_3d --data.data_path /path/to/data  or make

customization on details directly from a human-readable con�guration �le, such as choosing batch
normalization or instance normalization in certain layers of the model, or adding extra data
augmentation steps, etc.. We provide an extensive list of more than 20 example con�gurations for
various applications and comprehensive documentation to address common questions for users as
reference. For users preferring graphical interface, another napari plugin for the MMV toolbox has
been planned as the extension of MMV_Im2Im (see Discussion for details).

In addition, the modularization and con�guration system is designed to allow not only con�guring
with the elements o�ered by the package itself, but also any compatible elements from a third-party
package or from a public repository on Github. For example, one can easily switch the 3D neural
network in the original Embedseg method to any customized U-Net from FastAI by specifying the
network as fastai.vision.models.unet . Such painless extendability releases the power of the
toolbox, ampli�es the bene�t of the open-source ML community and upholds our philosophy of open
science.

Feature 3: customization for biomedical imaging applications:

Bottleneck: Not enough consideration for speci�c challenges in microscopy images in general DL
toolboxes

The original idea of a general toolbox actually stemmed from the OpenMMLab project [17], which
provides generic codebases for a wide range of computer vision research topics. For instance,
MMSegmentation [18] is an open source toolbox for semantic segmentation, supporting uni�ed
benchmarking and state-of-the-art models ready to use out-of-box. It has become one of most widely
used codebase for research in semantic segmentation (2.3K forks and 6.5K stars on GitHub as of
September 29, 2023). This inspires us to develop MMV_Im2Im to facilitate research in image-to-image
transformation with a special focus on biomedical applications.

First of all, di�erent from general computer vision datasets, such as ImageNet [19], where the images
are usually small 2D RGB images (e.g., 3 x 256 x 256 pixels), biomedical applications usually involves
large-scale high dimensional data (e.g., 500 images of 4 x 128 x 2048 x 2048 voxels). To deal with this
issue, we employ the PersistentDataset in MONAI [20] with partial loading and sampling support, as
well as delayed image reading powered by aicsimageio [21] as default (con�gurable if another



dataloader is preferred). As a result, in our stress test, training a 3D nuclei instance segmentation
model with more than 125,000 3D images can be conducted e�ciently in a day, even with limited
resources.

Second, because microscopy data is not restricted to 2D, we re-implement common frameworks, such
as fully convolutional networks (FCN), conditional generative models, cycle-consistent generative
models, etc., in a generic way to easily switch between di�erent dimensionalities for training. During
inference, up to 5D images (channel x time x Z x Y x X) can be directly loaded as the input without pre-
splitting into smaller 2D/3D chunks.

Third, the toolbox pre-packs common functionalities speci�c to microscopy images. For example, we
incorporate the special image normalization method introduced in [5], where only the middle chunk
along the Z dimension of 3D microscopy images will be used for calculating the mean and standard
deviation of image intensity for standard normalization. Also, 3D light microscopy images are usually
anisotropic, i.e., much lower resolution along Z than XY dimension. So, we adopt the anisotropic
variation of UNet as proposed in [22].

Finally, to deploy the model in production, a model trained on small 3D patches sometimes needs to
be applied not only on much larger images. Combining the e�cient data handling of aicsimageio [21]
and the sliding window inference with gaussian weighted blending, the toolbox can yield e�cient
inference without visible stitching artifacts in production.

All in all, the MMV_Im2Im toolbox stands on the shoulders of many giants in the open-source software
and ML engineering communities (pytorch-lightning, MONAI, aicsimageio, etc.) and is systematically
designed for image-to-image transformation R&D for biomedical applications. The source code of
MMV_Im2Im is available at [1]. This manuscript is generated with the open-source package Manubot
[23]. The manuscript source code is available at [24].



Figure 1:  Overview of the image-to-image transformation concept and its example applications.

Results

In this section, we showcase the versatility of the MMV_Im2Im toolbox by presenting over ten di�erent
biomedical applications across various R&D use cases and scales. All experiments and results in this
section were conducted on publicly available datasets released with other publications and our scripts
(for pulling the public dataset online and data wrangling) and con�guration �les (for setting up
training and inference details), both included in the MMV_Im2Im package. Our aim is to make it easy
to reproduce all of the results in this paper, and more importantly use these data and scripts to get
familiar with the package and adapt to new problems of users’ interest. It is important to note that the
aim of these experiments was not to achieve the best performance on each individual task, as this
may require further hyper-parameter tuning (see Discussion section for more details). Rather, the
experiments were intended to demonstrate the package’s di�erent features and general applicability,
providing a holistic view of image-to-image transformation concepts to biomedical researchers. We
hope that these concepts will help researchers integrate AI into traditional assay development
strategies and inspire computational and experimental co-design methods, enabling new biomedical
studies that were previously unfeasible.

Labelfree prediction of nuclear structure from 2D/3D bright�eld
images

The labelfree method refers to a DL method that can predict �uorescent images directly from
transmitted light bright�eld images [5]. Compared to bright�eld images, �uorescent images can



resolve subcellular structures in living cells at high resolution but with the cost of expensive and slow
procedures and high phototoxicity. The labelfree method provides a new perspective in assay
development to conduct integrated computational analysis of multiple organelles only with a single
bright�eld image acquisition. In our �rst demonstration, we applied MMV_Im2Im to build 2D/3D
models that can predict �uorescent images of nuclear structures from bright�eld images. For 3D
models, we also compared (1) di�erent image normalization methods, (2) di�erent network
backbones, and (3) di�erent types of models.

It should be noted that while we recognize the importance of systematically evaluating the
predictions, such an analysis falls outside the scope of this paper. We argue that an appropriate
evaluation methodology should depend on speci�c downstream quantitative analysis goals (e.g., [27]).
For example, if our aim is to quantify the size of nucleoli, we must compare the segmentation derived
from real nucleoli signals to that of the predicted nucleoli segmentation, ensuring that measurements
from both are consistent. Alternatively, if the goal is to localize the nucleoli roughly within the cell,
Pearson correlation may be a more appropriate metric. In this work, we concentrate on visual
inspection, using Pearson correlation and structural similarity as a rough quantitative reference. Our
intent is to demonstrate the utility of our MMV_Im2Im package, and leave appropriate evaluations to
users in their speci�c problems in real studies.

2D Labelfree: We started with a simple problem using 2D images from the HeLa “Kyoto” cells dataset
[28]. For all images, we took the bright�eld channel and the mCherry-H2B channel out of the multi-
channel timelapse movies. 2D images were acquired at 20x with 0.8 N.A. and then downscaled by 4
(pixel size: 0.299 nm x 0.299 nm). Example predictions can be found in Figure 2-A. We compared a
basic UNet model [10] and a 2D version of the fnet model in [5]. The fnet model achieved slightly
more accurate predictions than the basic UNet, as seen in Figure 2-A.

3D Labelfree: We tested with 3D images from the hiPSC single cell image dataset [29]. Speci�cally, we
extracted the bright�eld channel and the structure channel from the full �eld-of-view (FOV) multi-
channel images, from the HIST1H2BJ, FBL, NPM1, LMNB1 cell lines, so as to predict from one
bright�eld image various nuclear structures, histones, nucleoli (dense �brillar component via
�brillarin), nucleoli (granular component via nucleophosmin), and nuclear envelope, respectively.
Images were acquired at 100x with 1.25 NA (voxel size: 0.108 micron x 0.108 micron x 0.29 micron).



Figure 2:  A. Example of 2D labelfree results. B. Overview of various 3D labelfree results obtained by di�erent training
strategies. p/c/s refers to percentile normalization, center normalization, and standard normalization, respectively (see
main text for details). (The contrast of grayscale images was adjusted using ImageJ’s autoscale.)

We conducted three groups of comparisons (see results in Figure 2-B). First, we compared three
di�erent image normalization methods for 3D images: percentile normalization, standard
normalization, center normalization [5]. Percentile normalization refers to cutting the intensity out of
the range of [0.5, 99.5] percentile of the image intensity and then rescale the values to the range of
[-1, 1], while the standard normalization is simply subtracting mean intensity and then divided by the
standard deviation of all pixel intensities. Center normalization is similar to standard normalization,
but the statistics are calculated only around the center along the Z-axis [5]. One could easily test
di�erent percentiles or rescaling to [0, 1] instead of [-1, 1]. Qualitatively, we found center
normalization slightly more accurate and more robust than the other two (see �rst row of Figure 3-B).

Second, we compared di�erent network backbone architectures, including the original fnet model [5],
an enhanced UNet [30], the attention UNet [31], two transformer-based models, SwinUNETR [32] and
UNETR[33] (all with center normalization). Inspecting the predictions on a holdout validation set
suggested that fnet achieved the best performance.



Finally, we showed the comparison between three di�erent types of models, an FCN-type model (i.e.,
fnet), a pix2pix-type model, and a CycleGAN-type model. For fair comparison, we used fnet as the
same backbone for all three types of models. In theory, the pix2pix-type model can be trained in two
di�erent ways: from scratch or initializing the generator with a pre-trained fnet (trained as FCN).
Examples of the comparison results were shown in the last two rows in Figure 3-B. Visually, it is
evident that the additional adversarial components (i.e., the discriminator) could generate images
with more realistic appearance than a typical FCN-type model alone, but again, we leave the
appropriate quantitative evaluations to users’ speci�c biomedical studies.

From the experiments above, we found that center normalization + pix2pix with fnet as the generator
achieved the best overall performance qualitatively. So, we employed the same strategy on all other
nuclear structures. At the end, we had four di�erent labelfree models, each predicting one di�erent
nuclear structure from 3D bright�eld images. As an example of evaluation, we calculated the Pearson
correlation, the structural similarity and the peak signal to noise ratio on holdout validation sets. The
results were summarized in Table 1. Again, these numbers were merely examples of evaluation,
systematic evaluation based on each speci�c biological problem would be necessary before
deployment. Figure 3-A shows the comparison of each predicted structure and its ground truth, while
Figure 3-B shows one example of all four di�erent structures predicted from a single unseen
bright�eld image. This would permit an integrated analysis of four di�erent nuclear components that
could hardly be acquired simultaneously in real experiments and real images.

Table 1:  Evaluation of the �nal 3D labelfree models for four di�erent nuclear structures.

Dataset Pearson Correlation Structural Similarity Peak Signal to Noise Ratio

FBL 0.902 ± 0.014 0.864 ± 0.029 33.559 ± 1.182

HIST1H2BJ 0.880 ± 0.022 0.735 ± 0.070 27.307 ± 2.832

LMNB1 0.883 ± 0.020 0.703 ± 0.060 29.582 ± 1.793

NPM1 0.939 ± 0.009 0.846 ± 0.027 32.636 ± 1.040



Figure 3:  A. Comparison of predictions of di�erent 3D labelfree models and each ground truth. B. Predictions of the
di�erent labelfree models using the same bright�eld image as input, which provides a deep insight into the nuclear
structure. This would not be possible with bright�eld imaging alone and is enabled by the application of the labelfree
approach. (The contrast of grayscale images was adjusted using ImageJ’s autoscale.)

2D semantic segmentation of tissues from H&E images

Segmentation is a common image processing task, and can be considered as a special type of image-
to-image transformation, where the generated images are segmentation masks. DL-based methods
have achieved huge success in semantic segmentation in biomedical images. In this example, we
demonstrated MMV_Im2Im on a pathology application to segment glands from hematoxylin and eosin
(H&E) stained tissue images from the 2015 Gland Segmentation challenge [34,35]. Stain normalization
is an important pre-processing step in order to develop models robust to stain variation and tissue
variations. MMV_Im2Im included a classic stain normalization method [36] as a pre-processing step.
The e�ect of stain normalization can be observed in Figure 4-A and B. We trained a simple attention
UNet model [31]. Evaluated on the two di�erent holdout test sets, the model achieved F1-score, 0.904
± 0.060 and 0.861 ± 0.117 on test set A and test set B, respectively. The performance was competitive



compared to the methods reported in the challenge report [35], especially with much more consistent
performance across the two di�erent test sets. Example results can be found in Figure 4-C.

Figure 4:  Example results of 2D semantic segmentation of gland in H&E images. A and B provide insight into the stain
normalization implemented in MMV_Im2Im. C compares a raw example image before stain normalization and
prediction to the ground truth for each test set.

Instance segmentation in microscopy images

Instance segmentation is a type of segmentation problem that goes beyond semantic segmentation.
The goal is to di�erentiate not only between di�erent types of objects, but also di�erent instances of
the same type of objects. Currently, the MMV_Im2Im package supports EmbedSeg-type models. The
major bene�t of EmbedSeg-type models is their agnosticism to the morphology and dimensionality of
the object instances, compared to other models such as StarDist [37,38], SplineDist [39] and Cellpose
[40]. For example, di�erent from the others, EmbedSeg-type models are even able to generate
instance segmentation where each instance contains multiple connected components. Additional
frameworks such as Omnipose [41] will be supported in future versions. Another mainstream
category of instance segmentation methods are detection-based models, such as Mask-RCNN [42].
However, these models are better suited to the detection framework rather than image-to-image
transformation (see Discussion section for details).

The EmbedSeg-type models were re-implemented according to the original paper [11,12] following
the generic boilerplate in MMV_Im2Im, with signi�cant improvement. First of all, following the



modular design of MMV_Im2Im, it is �exible to use di�erent neural network models as the backbone.
For 3D anisotropic microscopy images, the original backbone ERFNet [43] doesn’t take the anisotropic
dimensions into account and therefore may not perform well or even be applicable. In this scenario, it
is straightforward to employ another anisotropic neural network bone, such as the anisotropic U-Net
in [22] or the anisotropic version of Dynamic U-Net in MONAI. Second, we signi�cantly improve
training strategy. The original version requires pre-cropping patches centered around each instance
and pre-calculated the center images and class images. This may generate a massive amount of
additional data on the disk. More importantly, such pre-cropping makes data augmentation nearly
impossible, except the simple ones like �ipping (otherwise, the pre-calculated centers might be
wrong), and also greatly undersamples around negative cases (e.g., background). For example, we
have observed that for an EmbedSeg model training only with patches centered around instances, the
model may su�er from degraded performance during inference when there are a large amount of
background areas without any instances. Again, following the modular design of MMV_Im2Im, it is
now possible to do on-the-�y data augmentation and patch sampling, even weighted patch sampling.
Third, our improved EmbedSeg-type models can accept an exclusion mask so that certain parts of the
images can be ignored during training. This is especially useful for partially annotated ground truth.
For large images, it could be extremely time-consuming to require every single instance to be
annotated. The exclusion masks can address this bottleneck. Another extension compared to the
original implementation was that the MMV_Im2Im package made sliding windowing inference
straightforward, and therefore permitted easy handling of images of any size during inference.

In this work, we tested on both 2D and 3D instance segmentation problems. Going from 2D to 3D is
not a simple generalization from 2D models by switching 2D operations with 3D operations, but with
many practical challenges. Large GPU footprint is one of the biggest issues, which makes many
training strategies common in 2D not feasible in 3D, e.g. limited mini-batch size. MMV_Im2Im is able to
take advantage of state-of-the-art ML engineering methods to e�ciently handle 3D problems. For
example, by using e�ective half-precision training, one can greatly reduce GPU memory workload for
each sample and therefore increase the batch size or the patch size. When multiple GPUs are
available, it is also possible to easily take advantage of the additional resources to scale up the
training to multiple GPU cards, even multiple GPU nodes. As a demonstration, we applied EmbedSeg-
like models to a 2D problem of segmenting C. elegans from wide�eld images [44], as well as a 3D
problem of nuclear segmentation from �uorescent and bright�eld images from the hiPSC single cell
image dataset [29].

For the 2D problem, we adopted the same network backbone as in the original EmbedSeg paper.
Example results on a small holdout set of 5 images are shown in Figure 5-A (average precision at 50 =
0.866 ± 0.163), which is comparable to the original published results [12]. For the 3D problem, the
original backbone is not directly applicable, due to the before mentioned anisotropic issue and the
images in the dataset do not contain enough Z-slices to run through all down sampling blocks in 3D.
The anisotropic UNet [22] is used here. The segmentation results obtained from the public dataset
[29] contain nuclear instance segmentation of all cells. But, the cells touching the image borders are
ignored from downstream analysis [29] and therefore not curated. In other words, the segmentation
from this public dataset can only be used as high-quality nuclear instance segmentation ground truth
after excluding the areas covered by cells touching the image borders [29]. Therefore, the exclusion
masking function in MMV_Im2Im is very helpful in this example.

Example results were presented in Figure 5-B. The green box highlighted a mitotic cell (the DNA
signals forming “spaghetti” shapes). The average precision at 50 for the �uorescence model is 0.827 ±
0.082 and it can be seen that the �uorescence model is able to distinguish the complex DNA signal
from the background. Even holes can appear in the predicted segmentation, allowing the prediction of
very complex shapes that are theoretically not feasible for other instance segmentation models like
StarDist or Cellpose. Additionally, EmbedSeg-type models are able to assign spatially unrelated
structures to the same instance (see Figure 5 bottom). Nuclear instance segmentation from bright�eld



images was much more challenging than from �uorescent images (average precision at 50 = 0.622 ±
0.101).

Figure 5:  (A) Results 2D instance segmentation of C. elegans. A minor error can be observed in the zoom-in window. (B)
Results of 3D nuclear instance segmentation from �uorescent images and bright�eld images. The green box in the
�uorescent image highlights a mitotic example. The side view panel shows the segmentation of one speci�c nucleus
along the line annotated in the �uorescent image from the side. The contrast of grayscale images were adjusted using
ImageJ’s autoscale.

Comparing semantic segmentation and instance segmentation of
organelles from 3D confocal microscopy images

We did a special comparison in this subsection to further illustrate the di�erence between semantic
and instance segmentations. We took the 3D �brillarin dataset from [29]. There are multiple channels
in each 3D image, including DNA dye, membrane dye, and the structure channel (i.e., �brillarin in this
case). The original �brillarin segmentation released with the dataset is a semantic segmentation
(0=background, 1=�brillarin). With the additional cell segmentation available in the dataset, we can
know which groups of segmented �brillarin belong to the same cell. Then, we can convert the original
3D �brillarin semantic segmentation ground truth into 3D instance segmentation ground truth
(�brillarin pixels belonging to the same cell are grouped as a unique instance). Sample images and
results are shown in Figure 6. We can observe that the semantic segmentation model is able to
achieve good accuracy in determining pixels from the �brillarin signals (F1 = 0.958 ± 0.008).



Meanwhile, the instance segmentation can group them properly (average precision at 50 = 0.795 ±
0.055) so that �brillarin masks from the same cell are successfully identi�ed as unique instances, even
without referring to the cell membrane channel or cell segmentation results. This is not a simple
grouping step based on distance, since the �brillarin signals from tightly touching nuclei may exist
very close to each other.

Figure 6:  Comparing 3D semantic segmentation and 3D instance segmentation results on confocal microscopy images
of �brillarin (showing a middle Z-slice of a 3D stack). Shown are the raw image, the prediction of the instance
segmentation, and for both segmentations a mask that gives an overview of true positive, false negative, and false
positive pixels.

Unsupervised semantic segmentation of intracellular structures from
2D/3D confocal microscopy images

Large amounts of high-quality segmentation ground truth is not always available, or may require
endless e�ort to collect for a segmentation task. CycleGAN-based methods have opened up a new
avenue for segmentation without the need for pixel-wise ground truth [13]. In this subsection, we
demonstrate an unsupervised learning-based segmentation method on four examples: 2D tight-
junction (via ZO1) segmentation from 2D FP-tagged ZO1 images (max-projected from 3D stacks), and
segmentation of nuclei, mitochondria, and golgi from 3D confocal microscopy images.

To perform unsupervised learning, we used raw images from the hiPSC single-cell image dataset [29],
as well as their corresponding segmentations (may not be absolute pixel-wise ground truth, but have
gone through systematic evaluation to ensure the overall quality). We shu�ed the raw images and
their segmentations to generate a set of simulated segmentation masks. A demonstration of the



concept is illustrated in Figure 7-A. Example results for all 3D models are shown in Figure 7-B, and the
F1-scores on the test set are summarized in Table 2.

For the 2D example, we saw that the unsupervised training provides a valuable segmentation, which
is re�ected by the F1 Score in Table 2. For the 3D examples, it has been suggested that the quality of
unsupervised nuclei segmentation could be further improved with additional simulation strategies
[13]. Overall, we believe that unsupervised learning o�ers an e�ective way to generate preliminary
segmentation, which can be further re�ned through active learning such as the iterative DL work�ow
described in [22].

Table 2:  F1 scores of the unsupervised semantic segmentation predictions.

Dimensionality Dataset F1 Score # of Test Data

2D tight-junction 0.906 ± 0.011 18

3D nucleus 0.836 ± 0.081 31

3D golgi 0.689 ± 0.057 44

3D mitochondria 0.804 ± 0.015 54

Figure 7:  (A) Illustration of the unsupervised learning scheme and results in the 2D tight-junction segmentation
problem. (B) Example 3D segmentation results (only showing a middle z-slice) from models obtained by unsupervised
learning. The contrast of grayscale images was adjusted using ImageJ’s autoscale.

Generating synthetic microscopy images from binary masks

Generating a large amount of synthetic microscopy images can be an important step in developing
image analysis methods. Synthetic images o�er a way to train other DL models, such as self-
supervised pre-training, using a diverse set of images without the need for large amounts of real-
world data. As long as the synthetic images are generated with su�cient quality, it is possible to have
an unlimited amount of training data for certain applications. Moreover, synthetic images can be used
to evaluate other models when validation data is di�cult to obtain. In this study, we demonstrate that
MMV_Im2Im can generate 2D/3D synthetic microscopy images with high realism and validity, using a



subset of data collected from the hiPSC single-cell image dataset [29], either in a supervised or
unsupervised manner.

For 2D demonstration, we extracted the middle Z-slice from NPM1 images as the training target, while
using the NPM1 segmentation results as the input binary masks. With the paired “mask + microscopy
image” data, we could train the model in a supervised fashion, or randomly shu�e the data to
simulate the situation without paired data which can be trained in an unsupervised fashion using the
CycleGAN-type framework implemented in MMV_Im2Im. Example results can be found in Figure 8-A
and Table 3. In general, the supervised synthesization can generate more realistic images than the
unsupervised model.

For 3D demonstration, we use 3D H2B images with two di�erent types of input masks. First, we
attempted to generate synthetic images from a coarse mask (i.e., only the overall shape of the
nucleus, available as nuclear segmentation from the dataset) with both supervised training and
unsupervised training. The unsupervised model in MMV_Im2Im uses the CycleGAN-based approaches.
So, the unsupervised training is actually already done within the unsupervised segmentation
experiments. In other words, the unsupervised model works in a bi-directional way, from real
microscopy images to binary masks, and also from binary masks to simulated microscopy images.
Here, we could also do the inference in a di�erent direction (from binary to simulated microscopy)
using the model trained in the unsupervised segmentation section. The results are shown in Figure 8-
B (row 1). The unsupervised synthesization can mostly “paint” the mask with homogeneous grayscale
intensity, while the supervised model can simulate the textures to some extent. For a relatively large
mask, it could be challenging for a model to �ll in su�cient details to simulate real microscopy images
(might be improved with di�usion-based models, see Discussions).

We made another attempt with 3D masks containing �ner details beyond the overall shapes. So, we
employed the H2B structure segmentation results from the dataset (capturing the detailed nuclear
components marked by histone H2B) as the input for supervised synthesization. The result is shown
in Figure 8-B (row 2). Compared to the synthesization with coarse masks, the images simulated from
�ne masks exhibit a much more realistic appearance. As we can see, it is important to design the
solutions with proper data. Preliminary quantitative evaluations on all synthesization experiments are
summarized in Table 3.



Figure 8:  Example results of (A) 2D synthetic �uorescent images of nucleoli (via NPM1) and (B) 3D synthetic �uorescent
images of H2B (middle z-slices of a z-stack) with a coarse mask and a �ne mask as the input.

Table 3:  Results of the synthetic generation of microscopy images from binary masks.

Dimensionality Dataset Training Pearson Correlation

2D NPM1 supervised 0.925 ± 0.019

2D NPM1 unsupervised 0.913 ± 0.023

3D H2B_coarse supervised 0.841 ± 0.023

3D H2B_coarse unsupervised 0.796 ± 0.035

3D H2B_�ne supervised 0.939 ± 0.009

Image denoising for microscopy images

MMV_Im2Im can also be used to computationally reduce image noise or restore the data from various
sources of imaging artifacts, so as to increase the feasibility and e�ciency in downstream analysis. In



the current version of MMV_Im2Im, the restoration model can only be trained in a fully supervised
manner. Therefore, aligned low-quality and high-quality images are required for supervision, even
though such paired data can be partially simulated [7]. Other methods, such as unsupervised
learning-based solutions [45], will be made available within MMV_Im2Im in future versions.

In this example, we presented an image denoising demonstration with sample data from [46]. The
goal was to increase the quality of low signal-to-noise ratio (SNR) images of nucleus-stained �atworms
(Schmidtea mediterranea, planaria) and lightsheet images of Tribolium castaneum (red �our beetle)
embryos. The models were trained with paired data acquired with low and high laser intensity on
�xed samples, and then applied on live imaging data. For the nucleus-stained �atworm data (a test set
of 20 images are available), the model achieved Pearson correlation of 0.392 ± 0.065, while the
Pearson correlation between the noisy raw and ground truth images was 0.065 ± 0.057. For the red
�our beetle dataset, the model has improved the Pearson correlation from 0.219 ± 0.045 to 0.444 ±
0.077 (6 images). Based on this and the results in Figure 9, it can be observed that the low SNR images
can be greatly improved. Systematic quantitative evaluations would be necessary to con�rm the
biological validity, but beyond the scope of this paper.

Figure 9:  Denoising results of 3D images of nucleus-stained �atworm (planaria) and Tribolium castaneum embryos at a
single z-slice each. It can be seen that the predicted images have a greatly reduced SNR. Left: raw images (low SNR),
middle: reference images (high SNR), right: predictions. The contrast of grayscale images was adjusted using ImageJ’s
autoscale.

Imaging modality transformation from 3D confocal microscopy
images to stimulated emission depletion (STED) microscopy images

Another important application of image-to-image transformation is imaging modality transformation
[9], usually from one “cheaper” modality with lower resolution (e.g., with larger �eld-of-view, easier to
acquire and scale up) to another modality with higher resolution but expensive to obtain. Such
models will permit a new way in assay development strategy to take advantage of all the bene�ts of
the cheaper modality with lower resolution and still be able to enhance the resolution
computationally post hoc. To demonstrate the application of MMV_Im2Im in this scenario, we took an
example dataset with paired 3D confocal and Stimulated Emission Depletion (STED) images of two
di�erent cellular structures, microtubule and nuclear pore [9]. Sample results were summarized in
Figure 10 and Figure 11. The corresponding error plots show pixel-based absolute di�erences
between ground truth and prediction. Intensities were normalized to the interval from -1 to 1 for
training, with intensity limits restricted to the 0.01-percentile and 99.99-percentile values of the
intensity distribution.



Figure 10:  Example results of confocal-to-STED modality transformation of microtubule in three consecutive z-slices.
From top to bottom: raw confocal images, reference STED images, predicted images, error plots. For the error plots, the
ground truth images were normalized as described in the main text. The contrast of grayscale images was adjusted
using ImageJ’s autoscale.

For microtubule, the model achieved Pearson correlation of 0.786 ± 0.020 and a peak signal to noise
ratio of 21.201 ± 0.586, while for nuclear pore complex, the Pearson correlation was 0.744 ± 0.025 and
the peak signal to noise ratio was 22.939 ± 1.896. Considering a Pearson correlation of 0.699 ± 0.030
and a peak signal to noise ratio of 18.847 ± 0.649 for the microtubule dataset and a Pearson
correlation of 0.656 ± 0.033 and a peak signal to noise ratio of 20.352 ± 1.009 of the lower resolution
raw images with the higher resolution ground truth, this approach improved data quality. Also, visual
inspection can con�rm the e�ectiveness of the models. Again, it would be necessary to conduct
further quantitative evaluation to ensure the validity of users’ speci�c problems.



Figure 11:  Example results of confocal-to-STED modality transformation nuclear pore in three consecutive z-slices.
From top to bottom: raw confocal images, reference STED images, predicted images, error plots. For the error plots, the
ground truth images were normalized as described in the main text. The contrast of grayscale images was adjusted
using ImageJ’s autoscale.

Staining transformation in multiplex experiments

DL has emerged as a powerful tool for multiplex imaging, a powerful technique that enables the
simultaneous detection and visualization of multiple biomolecules within a single tissue sample. This
technique is increasingly being used in biomedical experiments but demands e�cient image analysis
solutions to accurately identify and quantify the di�erent biomolecules of interest at scale. DL has
demonstrated great potentials in analyzing multiplex datasets, as it can automatically learn the
complex relationships between di�erent biomolecules and their spatial distribution within tissues.
Speci�cally, in this study, we present the e�ectiveness of MMV_Im2Im in transforming tissue images
from one staining to another, which will permit e�cient co-registration, co-localization, and
quantitative analysis of multiplex datasets. We used the sample dataset from [6]. In this example, we
trained three di�erent models to transform IHC images to images of standard hematoxylin stain,
mpIF nuclear (DAPI) and mpIF LAP2beta (a nuclear envelope stain). Example results can be observed
in Figure 12 to verify the results qualitatively, the respective metrics can be found in Table 4. It is
worth mentioning that there is a pixel shift in the mpIF LAP2beta holdout dataset, but image
registration is beyond the scope of this manuscript. We show the metrics as an example of an
evaluation of the transformed images, but we leave an application-speci�c evaluation to the



appropriate researchers. But it is evident that these transformed images can provide valuable insights
into the localization and expression patterns of speci�c biomolecules spatially.

Table 4:  Results of the staining transformation in multiplex experiments, derived from 51 holdout images each.

Dataset Pearson Correlation Structural Similrarity Peak Signal to Noise Ratio

Hematoxylin 0.860 ± 0.075 0.453 ± 0.063 23.855 ± 1.742

DAPI 0.920 ± 0.049 0.770 ± 0.067 26.754 ± 2.129

LAP2beta 0.435 ± 0.087 0.597 ± 0.083 22.415 ± 1.586

Figure 12:  Qualitative visualization of staining transformation results with the MMV_Im2Im package. The top row refers
to the input image (IHC) and to the respective ground truth for hematoxylin, DAPI and LAP2beta, while the bottom row
shows the respective prediction.

Overview of used frameworks

From all experiments above (37 in total), we want to demonstrate the great �exibility of MMV_Im2Im
and not to optimize every task in detail. Presenting all detailed con�gurations in these 37 experiments
in the manuscript could lead to more confusion than clarity. To this end, we give a high-level overview
of the key information of each task in Table 5, hoping to serve as a valuable starting point for
researchers to optimize their DL-based image-to-image transformation using MMV_Im2Im. The full
con�guration details are available in human-readable formats in our GitHub repository [1].

Table 5:  Overview of the used frameworks for the demonstrated tasks.

Task Dim Framework Backbone

Labelfree 2D/3D FCN, Pix2pix, CycleGAN
fnet, UNet, AttentionUnet,
SwinUNETR, …

Semantic segmentation 2D/3D FCN, CycleGAN
AttentionUnet, DynUnet,
UNet3D

Instance segmentation 2D/3D EmbedSeg
BranchedERFNet_2d,
UNet3D



Task Dim Framework Backbone

Synthetic 2D/3D Pix2pix AttentionUnet, fnet

Denoising 3D FCN UNet

Modality transformation 3D FCN UNet3D

Staining transformation 2D Pix2pix prede�ned_unet

Methods

Overview of the code base

Overall, the package inherited the boilerplate concept from pytorch-lightning [15], and was made fully
con�gurable via yaml �les supported by pyrallis [47], as well as largely employed state-of-the-art DL
components from MONAI [20]. The three key parts in the package: mmv_im2im.models , 
mmv_im2im.data_modules , and Trainers , will be further described below.

Main frameworks for mmv_im2im.models

mmv_im2im.models is the core module de�ning the DL framework for your problem, where we can
instantiate the neural network architecture and de�ne what to do before training starts, what to do in
each training and validation step, what to do at the end of each epoch, etc.. All implemented following
the same lightning module from pytorch-lightning, which makes the code very easy to read, to
understand, and even to extend.

In general, there are mainly four major DL frameworks that could be applied to microscopy image-to-
image transformation: supervised learning with a fully convolutional networks (FCN) type models,
supervised learning with pix2pix type models, unsupervised learning to learn mapping between visual
domains, and Self2Self-type self-supervised learning [48]. The major di�erence between FCN based
supervised learning and pix2pix based supervised learning is that the pix2pix framework extends an
FCN model with an adversarial head as a discriminator to further improve the realism of the
prediction. The major di�erence between the unsupervised framework and the self-supervised
framework is that the unsupervised methods still require examples of the target images, even though
the source images and target images do not need to be from the same sample or pixel-wise aligned.
But, the self-supervised framework would only need the original images, which could be really helpful
when it is impossible to acquire the target images (e.g., there is no truly noise-free or artifact-free
image).

Currently, for supervised frameworks, both the FCN-type and pix2pix-type are well supported in the
MMV_Im2Im (RRID:SCR_024630) package. Since our package is designed in a very generic way, it is
possible to continuously expand the functionalities when available (ideally with community
contributions). For example, di�usion models [49] can be thought of as a modern extension of the
pix2pix-type framework and therefore are within our horizon to include into MMV_Im2Im. For the
unsupervised framework, only CycleGAN-type methods are supported. We are planning to extend the
unsupervised framework with Imaginaire [50], which will greatly extend the applicability of
MMV_Im2Im (e.g., learning the transformation from one single image to another single image or one
set of images to another set of images). Meanwhile, supporting the self-supervised framework will be
our next major milestone.

Customized mmv_im2im.data_modules for bioimaging applications



The data_modules implements a general module for data handling for all di�erent frameworks
mentioned above, from how to load the data to how to set up the dataloader for training and
validation. Di�erent people may prefer to organize their training data in di�erent ways, such as using
csv to organize input and the corresponding ground truth, or making di�erent folders (e.g. “image”
and “ground_truth”) with input and the corresponding ground truth sharing the same �le name, etc..
Or some people may prefer to do a random train/validation split, while others like to pre-split train
and validation into di�erent folders, etc.. Currently, the data_module in MMV_Im2Im supports four
di�erent ways of data loading, where we try to cover as many common scenarios as possible, so that
everyone will feel comfortable using it.

A big challenge in the dataloader in bioimaging applications is that there could be not only a large
amount of �les, but also �les of very large sizes. To deal with each individual large image, we used the
delayed loading from aicsimageio for e�cient image reading. Besides, we adopted the 
PersistentDataloader  from MONAI to further optimize the e�ciency. In speci�c, after loading a

large image and running through all the deterministic operations, like intensity normalization or
spatial padding, the PersistentDataLoader  will pickle and save the data in a temporary folder, to
avoid repeating the heavy computation on large �les in each training iteration. To handle the
potentially large number of �les, we implemented the data_module with the capability of loading only
a certain portion of the data into the memory in each epoch and reloading with a di�erent portion
every certain number of epochs. By doing this, we were able to e�ciently train an instance
segmentation model with more than 125K images, where each raw image is about 15MB.

State-of-the-art training with the pytorch-lightning Trainer

We fully adopted the Trainer from pytorch-lightning, which has been widely used by the machine
learning community, and widely tested on both R&D problems and industrial-scale applications. In a
nutshell, simply by specifying the training parameters in the yaml �le, users can set up multi-GPU
training, half-precision training, automatic learning rate �nder, automatic batch size �nder, early
stopping, stochastic weight averaging, etc.. This allows users to focus on the research problems
without worrying about the ML engineering.

Discussions

In this work, we presented a new open-source Python package MMV_Im2Im package for image-to-
image transformations in bioimaging applications. We demonstrated the applicability on more than
ten di�erent problems or datasets to give biomedical researchers a holistic view of the general image-
to-image transformation concepts with diverse examples. This package was not a simple collection of
existing methods. Instead, we distilled the knowledge from existing methods and created this generic
version with state-of-the-art ML engineering techniques, which made the package easy to understand,
easy to use, and easy to extend for future. We hope this package can serve the starting point for other
researchers doing AI-based image-to-image transformation research, and eventually build a large
shared community in the �eld of image-to-image transformation for bioimaging.

Further works

One of main directions for extending MMV_Im2Im is to pre-pack common bioimaging datasets as a
Dataset module, so that DL researchers can use it for algorithm development and benchmarking, and
new users can easily use it for learning microscopy image-to-image transformation. We will continue
improving the functionalities of the package, such as supporting more models and methods, such as
di�usion based models [49], unsupervised denoising [45] or Imaginaire [50]. Besides, we also plan to
develop two auxiliary packages MMV_Im2Im_Auto and MMV_Im2Im_Active. In speci�c, when you have



a reasonable amount of training data, MMV_Im2Im_Auto will take advantage of the fact that
MMV_Im2Im is fully con�gurable with yaml �les, and automatically generate a set of potentially good
con�gurations, then �nd the optimal solution for you by cross validation. On the other hand, when
you only have very limited training data, or even with only pseudo ground truth, MMV_Im2Im_Active
will help to build preliminary models from the limited training data, and gradually re�ne the model
with human-in-the-loop by active learning [22]. All the packages will also be wrapped into napari
plugins [51] to allow no-code operation and therefore be more friendly to users without experience in
programming.

The image-to-image transformation frameworks implemented in the current version do not explicitly
take temporal information into account. We treat images (2D or 3D) at each time step independently.
Thanks to the �exibility of aicsimageio, our package can directly read even multi-channel 3D timelapse
data (i.e, 5D) during training or inference, if necessary. But the computation is done at individual time
steps. A common method to integrate the temporal context with spatial information is the
convolutional recurrent neural network (CRNN) [52]. The support of CRNN will be part of our future
work.

Another type of microscopy image analysis problem related to image-to-image transformation is
image registration, where we learn how to transform the “�oating” image spatially so that it is
optimally aligned with the reference image in the physical space. Recent methods are able to
transform the �oating image into its registered version through deep neural networks [53]. This will
be another important direction for future extension.

Beyond MMV_Im2Im, we hope to develop a similar package for other problems (without re-inventing
wheels). For example, as we mentioned in the instance segmentation application, Mask-RCNN type
models are also very powerful instance segmentation methods and, in theory, can also be generalized
beyond 2D images. However, Mask-RCNN would �t more to a detection framework, instead of image-
to-image transformation. It will be supported in our MMV_NDet (NDet = N-dimensional detection)
package, currently under development.

Code availability and requirements

Project name: MMV_Im2Im (Microscopy Machine Vision, Image-to-Image transformation)

Project home page: [1]

Operating system(s): Linux and Windows (when using GPU), also MacOS (when only using CPU)

Programming language: Python

Other requirements: PyTorch 2.0.1 or higher, PyTorch Lightning > 2.0.0, and all other additional
dependencies are speci�ed as in [1]

License: MIT license

To enhance the accessibility and traceability of our toolbox, we registered it with biotools (bio.tools ID:
biotools:mmv_im2im) and work�ow hub[54].

Data and model availability



In general, all data used in this work were from open-accessible public repositories, released with
other publications under open-source licenses. All data used in this work were only for research
purposes, and we con�rm that we didn’t use these for any other non-commercial purpose or
commercial purpose. he scripts we used to download and re-organize the data can be found in the
release branch called “paper_version” within our repository [1]. Detailed information about each
dataset is listed below, in the same order as the Results section. Snapshots of our code and other data
further supporting this work are openly available in the GigaScience repository, GigaDB [xx##]. In
addition, we deposited all the trained models and sample data at Zenodo [55] to ensure the
reproducibility of our work.

1. Labelfree prediction of nuclear structure from 2D/3D bright�eld images:

2D: The data were downloaded from [28] and [56]. We used all the data from the two sources, while
15% of the data were held-out for testing. In speci�c, for data source 1 [28], it contains a timelapse ti�
of 240 time steps, each with 5 channels (only channel 3 and 5 were used in this work).

Channel 1 : Low Contrast Digital Phase Contrast (DPC)
Channel 2 : High Contrast DPC
Channel 3 : Bright�eld (the input in our study)
Channel 4 : EGFP-α-tubulin
Channel 5 : mCherry-H2B (the ground truth in our study)

For data source 2 [56], it contains two sub-folders (train and test), each with snapshots sliced from
di�erent time lapse data. Each snapshot is saved as six di�erent ti� �les (only the _bf and the second
channel of _�uo were used in this work):

_bf: bright �eld (the input in our study),
_cyto: cytoplasm segmentation mask
_dpc: phase contrast
_�uo: two channel, �rst cytoplasm, second H2B (the H2B channel is the ground truth in our study)
_nuclei: nuclei segmentation mask
_sqrdpc: square-root phase contrast

3D: The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket [57], which was released with the publication [29]. Each �eld-of-view (FOV) is a multi-channel
3D image, of which the bright�eld and the corresponding structure channels were used as input and
ground truth, respectively. Experiments were done on four di�erent cell lines: �brillarin
(structure_name = “FBL”), nucleophosmin (structure_name = “NPM1”), lamin b1 (structure_name =
“LMNB1”), and histone H2B (structure_name = “HIST1H2BJ”), with 20% of the data were held-out for
testing.

2. 2D semantic segmentation of tissues from H&E images

These data were originally used for the MICCAI GlaS challenge [58], and are also available from a
number of other sources [59,60]. There were one training set (85 images) and two test sets (60 and 20
images). We kept the same train/test split as in the challenge.

3. Instance segmentation in microscopy images

2D: The data were downloaded from [61] for segmenting C. elegans from wide�eld images [62]. We
used all images from the dataset, while 5% of the data were held-out for testing.



3D: The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket: [57]. We used the lamin b1 cell line (structure_name = “LMNB1”) for these experiments. Each
raw �eld-of-view (FOV) is a multi-channel 3D image (DNA dye channel, membrane dye channel,
structure channel and bright�eld channel), with the instance segmentation of all nuclei available. In
our two experiments, we used the DNA dye channel and the bright�eld channel as input, respectively,
while using the same 3D instance segmentation ground truth. 20% of the data were held-out for
testing.

4. Comparing semantic segmentation and instance segmentation of organelles from 3D
confocal microscopy images

The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt Bucket:
[57]. We used the �brillarin cell line (structure_name = “FBL”) for these experiments. Each raw �eld-of-
view (FOV) is a multi-channel 3D image (DNA dye channel, membrane dye channel, structure channel
and bright�eld channel). The input is always the structure channel. Then, we used the FBL_�ne
work�ow in the Allen Cell and Structure Segmenter [22] to generate the semantic segmentation
ground truth, and we used the cell instance segmentation to group �brillarin segmentations
belonging to the same cell as unique instances (see more details in Results section), which will be used
as the instance segmentation ground truth. The FBL_�ne segmentation work�ow was optimized for
this cell line, which can be considered as a good approximation of the real truth. To be conservative,
we excluded images where the mean intensity of the structure channel is outside the range of [450,
500], so that the results from the FBL_�ne work�ow can be a better approximation of the real truth.
After removing the “outlier” images, we held-out 20% of the data for testing.

5. Unsupervised semantic segmentation of intracellular structures from 2D/3D confocal
microscopy images

2D: The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket: [57]. We used the tight junction cell line (structure_name = “TJP1”) for this experiment. The
original image and corresponding structure segmentation were both in 3D. We took the max intensity
projection of the raw structure channel and the corresponding structure segmentation for
experimenting unsupervised 2D segmentation. The correspondence between images and
segmentations were shu�ed to simulate unpaired ground truth. 20% of the data were held-out for
testing.

3D: The data were also downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket: [57]. We used three di�erent cell lines for these experiments: Golgi (structure_name =
“ST6GAL1”), mitochondria (structure_name = “TOMM20”), and histone H2B (structure_name =
“HIST12BJ”). For Golgi and mitochondria, we simply used the corresponding structure segmentation
from the dataset. For histone H2B, we took the released nuclear instance segmentation and
converted it to binary as semantic segmentation results. The correspondence between images and
segmentations were shu�ed to simulate unpaired ground truth. 20% of the data were held-out for
testing.

6. Generating synthetic microscopy images from binary Masks

2D: The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket: [57]. We used the nucleophosmin cell line (structure_name = “NPM1”) for this experiment. The
original image and corresponding structure segmentation were both in 3D. We took the max intensity
projection of the raw structure channel and the corresponding structure segmentation for this
experiment. The input is binary segmentation, while the ground truth is the raw image.



3D: The data were downloaded from the hiPSC single cell image dataset from the Allen Cell Quilt
Bucket: [57]. We used the histone H2B cell line (structure_name = “HIST1H2BJ”) for these experiments.
For the experiment with coarse masks, we used the binarized nuclear segmentation as the input,
while for the experiment with detailed masks, we used the structure segmentation of H2B as the
input. The ground truth is always the raw 3D structure image.

7. Image denoising for microscopy images

The data were downloaded from [63], which was released with the publication [46]. We used two
datasets “Denoising_Planaria.tar.gz” and “Denoising_Tribolium.tar.gz”. We kept the original train/test
splitting in the datasets.

8. Imaging modality transformation from 3D confocal microscopy images to stimulated
emission depletion (STED) microscopy images

The data were downloaded from [64], which was released with the publication [9]. We used two
datasets Microtubule and Nuclear_Pore_complex from “Confocal_2_STED.zip”. We kept the original
train/test splitting in the datasets.

9. Staining transformation in multiplex experiments

This dataset was downloaded from [65], which was released with the publication [6]. We used the
dataset “BC-DeepLIIF_Training_Set.zip” and “BC-DeepLIIF_Validation_Set.zip”. In our three experiments,
we always used the IHC image as the input, and used standard hematoxylin stain image, mpIF nuclear
image and mpIF LAP2beta image as ground truth, correspondingly.

10. Models and sample data

To help researchers get started with our tool, we have deposited all models used in the manuscript as
well as sample data at [55].
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